Abstract

Heterozygous mutations of the transcription factor PHOX2B have been found in most patients with central congenital hypoventilation syndrome, a rare disease characterized by sleep-related hypoventilation and impaired chemosensitivity to sustained hypercapnia and sustained hypoxia. PHOX2B is a master regulator of autonomic reflex pathways, including peripheral chemosensitive pathways. In the present study, we used hyperoxic tests to assess the strength of the peripheral chemoreceptor tonic drive in Phox2b+/-newborn mice. We exposed 69 wild-type and 67 mutant mice to two hyperoxic tests (12-min air followed by 3-min 100% O2) 2 days after birth. Breathing variables were measured noninvasively using whole body flow plethysmography. The initial minute ventilation decrease was larger in mutant pups than in wild-type pups: -37% (SD 13) and -25% (SD 18), respectively, P<0.0001. Furthermore, minute ventilation remained depressed throughout O2 exposure in mutants, possibly because of their previously reported impaired CO2 chemosensitivity, whereas it returned rapidly to the normoxic level in wild-type pups. Hyperoxia considerably increased total apnea duration in mutant compared with wild-type pups (P=0.0001). A complementary experiment established that body temperature was not influenced by hyperoxia in either genotype group and, therefore, did not account for genotype-related differences in the hyperoxic ventilatory response. Thus partial loss of Phox2b function by heterozygosity did not diminish the tonic drive from peripheral chemoreceptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call