Abstract

Rats with established monocrotaline (MCT)-induced pulmonary hypertension also exhibit a profound increase in lung resistance (RL) and a decrease in lung compliance. Because airway/lung dysfunction could precede and influence the evolution of MCT-induced pulmonary vascular disease, it is important to establish the temporal relationship between development of pulmonary hypertension and altered ventilatory function in MCT-treated rats. To resolve this issue, we segregated 47 young Sprague-Dawley rats into four groups: control (n = 13), MCT1 (n = 9), MCT2 (n = 11), and MCT3 (n = 14). Each MCT rat received a single subcutaneous injection of MCT (60 mg/kg) 1 MCT1), 2 (MCT2), or 3 (MCT3) wk before the functional study. At 1 wk after MCT, significant increases in RL and alveolar wall thickness were observed, as was a significant decrease in carbon monoxide diffusing capacity (DLCO). Medial thickness of pulmonary arteries (50-100 microns OD) and right ventricular hypertrophy were not observed until 2 and 3 wk post-MCT, respectively. Coincident with the right ventricular hypertrophy at 3 wk post-MCT were decreased DLCO and increased alveolar wall thickness and lung dry weight. Pressure-volume curves of air-filled and saline-filled lungs showed marked rightward shifts during the 1st and 2nd wk after MCT administration and then decreased at the 3rd wk. These data suggest that MCT-induced alterations in airway/lung function preceded those of pulmonary vasculature and, therefore, implicate airway/lung dysfunctions as potentially contributing to the later development of pulmonary vascular abnormalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call