Abstract

The effects of upper airway (UA) cool air and CO2 on breathing and on laryngeal and supraglottic resistances were studied in anaesthetised rats breathing spontaneously through a tracheostomy. Warm, humidified air containing 0, 5 and 9-10% CO2 and cool, room-humidity air were delivered at constant flow to either the isolated larynx to exit through a pharyngotomy or to the supraglottic UA to exit through the mouth and/or nose (nose open or sealed). Spontaneous tracheal airflow and UA airflows, temperatures and pressures were recorded. CO2 had no effect on breathing but caused a slight increase in laryngeal resistance which was abolished by cutting the superior laryngeal nerves (SLN). Cool air caused a decrease in respiratory frequency and/or peak inspiratory flow when applied to the isolated larynx or to the supraglottic airway with the nose closed. These effects were abolished by SLN section. With the nose open, the ventilatory inhibition was not abolished by SLN section. Cool air also caused substantial decreases in laryngeal and supraglottic resistances which were attenuated by SLN section and which persisted following recurrent laryngeal nerve section. In conclusion, whilst UA cooling inhibits breathing and decreases UA resistances, UA CO2 has minimal effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call