Abstract

The purpose of this study was to understand the ventilatory and physiological responses immediately below and above the maximal lactate steady-state (MLSS) velocity and to determine the relationship of oxygen uptake (VO2) kinetics parameters with performance, in swimmers. Competitive athletes (N = 12) completed in random order and on different days a 400-m all-out test, an incremental step test comprising 5 × 250- and 1 × 200-m stages and 30 minutes at a constant swimming velocity (SV) at 87.5, 90, and 92.5% of the maximal aerobic velocity for MLSS velocity (MLSSv) determination. Two square-wave transitions of 500 m, 2.5% above and below the MLSSv were completed to determine VO2 on-kinetics. End-exercise VO2 at 97.5 and 102.5% of MLSSv represented, respectively, 81 and 97% of VO2max; the latter was not significantly different from maximal VO2 (VO2max). The VO2 at MLSSv (49.3 ± 9.2 ml·kg(-1)·min(-1)) was not significantly different from the second ventilatory threshold (VT2) (51.3 ± 7.6 ml·kg(-1)·min(-1)). The velocity associated with MLSS seems to be accurately estimated by the SV at VT2 (vVT2), and vVO2max also seems to be estimated with accuracy from the central 300-m mean velocity of a 400-m trial, indicators that represent a helpful tool for coaches. The 400-m swimming performance (T400) was correlated with the time constant of the primary phase VO2 kinetics (τp) at 97.5% MLSSv, and T800 was correlated with τp in both 97.5 and 102.5% of MLSSv. The assessment of the VO2 kinetics in swimming can help coaches to build training sets according to a swimmer's individual physiological response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call