Abstract
To evaluate the difference of ventilatory and gas exchange response differences between arm and leg exercise, six healthy young men underwent ramp exercise testing at a rate of 15 W.min-1 on a cycle ergometer separately under either spontaneous (SPNT) or fixed (FIX) breathing modes, respectively. Controlled breathing was defined as a breathing frequency (fb; 30 breaths.min-1) which was neither equal to, nor a multiple of, cranking frequency (50 rev.min-1) to prevent coupling of locomotion and respiratory movement, i.e., so-called locomotor-respiratory coupling (LRC). Breath-by-breath oxygen uptake (VO2), ventilation (VE), CO2 output (VCO2), tidal volume (VT), fb and end-tidal PCO2 (PETCO2) were determined using a computerized metabolic cart. Arm exercise engendered a higher level of VO2 at each work rate than leg exercise under both FIX and SPNT conditions. However, FIX did not notably affect the VO2 response during either arm or leg exercise at each work rate compared to SPNT. During SPNT a significantly higher fb and lower PETCO2 during arm exercise was found compared with leg exercise up to a fb of 30 breaths.min-1 while VE and VT were nearly the same. During fixed breathing when fb was fixed at a higher rate than during SPNT, a significantly lower PETCO2 was observed during both exercise modes. These results suggest that: 1) FIX breathing does not affect the VO2 response during either arm or leg exercise even when non-synchronization between limb locomotion movement and breathing rate was adopted; 2) at a fb of 30 breaths.min-1 FIX breathing induced a hyperventilation resulting in a lower PETCO2 which was not associated with the metabolic rate during either arm or leg exercise, showing that VE during only leg exercise under the FIX condition was significantly higher than under the SPNT condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of physiological anthropology and applied human science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.