Abstract
A review of some existing digital simulations of fluid systems, a brief description of the proposed generalized computer code, a description of, and results from, two solution techniques, and a sample test case ventilation system are presented. The review of some fluid system simulations covers methods and techniques for development of a more general digital solution technique than the successive substitution method used in previous analyses. The structure and organization of the computer code under development is discussed. A section dealing with the development of a user-oriented input to the code is also presented. Two solution techniques suitable for solving the simultaneous nonlinear algebraic and differential equations are presented. One of the techniques is based upon a loop method and employs Newton's method for obtaining simultaneous iterative corrections for the solution. The second approach is based upon a node orientation and employs Cross' method to arrive at successive iterative corrections for the solution. Graphical results using both methods are presented. The results are essentially identical. A ''test-case'' ventilation system is introduced. The test-case ventilation system model was developed primarily for ''debugging'' the proposed generalized code. The test case is a simple yet realistic representation of the types of subsystems which could be encountered in nuclear facilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.