Abstract

ABSTRACT Scaphognathite and heart-pumping frequencies, ventilation volume, cardiac output, oxygen uptake and oxygen transport by haemolymph have been studied in unrestrained Dungeness crabs (Cancer magister) before, immediately after, and during recovery from 20 min of enforced exhausting activity. Exercise increased oxygen uptake 4-fold. This increase was achieved by more than 2-fold elevation of both ventilation volume and cardiac output and by greater participation of haemocyanin in oxygen delivery. The elevated ventilation volume resulted entirely from an increase in scaphognathite pumping frequency, while the rise in cardiac output resulted largely from increase in stroke volume. Prior to exercise haemocyanin accounts for less than 50% of the oxygen delivered to the tissues. Following exercise this increases to over 80%, the additional oxygen release being mediated by a depression of prebranchial oxygen tension and a substantial Bohr effect resulting from build up of lactate ion in the haemolymph and subsequent fall in pH. These changes allowed% oxygen extraction from branchial water to be maintained at 28% despite a 2-fold increase in ventilation volume, and allowed an increase in%. oxygen extraction by the tissues. Despite these changes oxygen supply fell below demand during exercise, and considerable anaerobic metabolism resulted, as evidenced by a 9-fold increase in haemolymph lactate concentration. The resulting oxygen debt required 8–24 h for repayment. Aerobic metabolic scope, and mechanisms of increasing oxygen uptake and transport in this crab are compared with those of a range of fish species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call