Abstract

Abstract. Ventilation is the primary pathway for atmosphere–ocean boundary perturbations, such as temperature anomalies, to be relayed to the ocean interior. It is also a conduit for gas exchange between the interface of atmosphere and ocean. Thus it is a mechanism whereby, for instance, the ocean interior is oxygenated and enriched in anthropogenic carbon. The ventilation of the Mediterranean Sea is fast in comparison to the world ocean and has large temporal variability. Here we present transient tracer data from a field campaign in April 2011 that sampled a unique suite of transient tracers (SF6, CFC-12, 3H and 3He) in all major basins of the Mediterranean. We apply the transit time distribution (TTD) model to the data in order to constrain the mean age, the ratio of the advective / diffusive transport and the number of water masses significant for ventilation. We found that the eastern part of the eastern Mediterranean can be reasonably described with a one-dimensional inverse Gaussian TTD (IG-TTD), and thus constrained with two independent tracers. The ventilation of the Ionian Sea and the western Mediterranean can only be constrained by a linear combination of IG-TTDs. We approximate the ventilation with a one-dimensional, two inverse Gaussian TTD (2IG-TTD) for these areas and demonstrate a possibility of constraining a 2IG-TTD from the available transient tracer data. The deep water in the Ionian Sea has a mean age between 120 and 160 years and is therefore substantially older than the mean age of the Levantine Basin deep water (60–80 years). These results are in contrast to those expected by the higher transient tracer concentrations in the Ionian Sea deep water. This is partly due to deep water of Adriatic origin having more diffusive properties in transport and formation (i.e., a high ratio of diffusion over advection), compared to the deep water of Aegean Sea origin that still dominates the deep Levantine Basin deep water after the Eastern Mediterranean Transient (EMT) in the early 1990s. The tracer minimum zone (TMZ) in the intermediate of the Levantine Basin is the oldest water mass with a mean age up to 290 years. We also show that the deep western Mediterranean has contributed approximately 40% of recently ventilated deep water from the Western Mediterranean Transition (WMT) event of the mid-2000s. The deep water has higher transient tracer concentrations than the mid-depth water, but the mean age is similar with values between 180 and 220 years.

Highlights

  • The Mediterranean Sea is a marginal sea, where the observational record shows significant changes in ventilation (Schneider et al, 2014)

  • We found that the eastern part of the eastern Mediterranean can be reasonably described with a one-dimensional inverse Gaussian transit time distribution (TTD) (IG-TTD), and constrained with two independent tracers

  • Beneath this tracer minimum zone (TMZ), the tracer concentrations are elevated in the deep water due to the deep water formation in the eastern Mediterranean Sea that led to a high volume input of tracer rich and dense water masses

Read more

Summary

Introduction

The Mediterranean Sea is a marginal sea, where the observational record shows significant changes in ventilation (Schneider et al, 2014). The extensive deep water formation in the western Mediterranean Sea (WMed) between 2004 and 2006, known as the Western Mediterranean Transition (WMT) event (Schroeder et al, 2008, 2010), is thought to have been triggered by the EMT event (Schroeder et al, 2006). Both events are part of a general circulation pattern which can be observed in the Mediterranean Sea. The surface water in the WMed is supplied by less dense Atlantic water (AW) through the Strait of Gibraltar. The AW flows eastwards at depths < 200 m into the Tyrrhenian Sea

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.