Abstract
Most cities in China, especially industrial cities, are facing severe air pollution, which affects the health of the residents and the development of cities. One of the most effective ways to alleviate air pollution is to improve the urban ventilation environment; however, few studies have focused on the relationship between them. The Frontal Area Index (FAI) can reflect the obstructive effect of buildings on wind. It is influenced by urban architectural form and is an attribute of the city itself that can be used to accurately measure the ventilation capacity or ventilation potential of the city. Here, the FAIs of 45 industrial cities of different sizes in different climatic zones in China were computed, and the relationship between the FAI and the concentration of typical pollutants, i.e., NO2, were analyzed. It was found that (1) the FAIs of most of the industrial cities in China were less than 0.45, indicating that most of the industrial cities in China have excellent and good ventilation capacities; (2) there were significant differences in the ventilation capacities of different cities, and the ventilation capacity decreased from the temperate to the tropical climate zone and increased from large to small cities; (3) there was a significant difference in the ventilation capacity in winter and summer, indicating that that with the exception of building height and building density, wind direction was also the main influencing factor of FAI; (4) the concentration of NO2 was significantly correlated with the FAI, and the relative contribution of the FAI to the NO2 concentration was stable at approximately 9% and was generally higher than other socioeconomic factors. There was a turning point in the influence of the FAI on the NO2 concentration (0.18 < FAI < 0.49), below which the FAI had a strong influence on the NO2 concentration, and above which the influence of the FAI became weaker. The results of this study can provide guidance for suppressing urban air pollution through urban planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.