Abstract

AbstractVentilation and dissolved oxygen in Lake Superior are key factors that determine the fate of various natural and anthropogenic inputs to the lake. We employ an idealized age tracer and biogeochemical tracers in a realistically configured numerical model of Lake Superior to characterize its ventilation and dissolved O2 cycle. Our results indicate that Lake Superior is preferentially ventilated over rough bathymetry and that spring overturning following a very cold winter does not completely ventilate the lake interior. While this is unexpected for a dimictic lake, no part of the lake remains isolated from the atmosphere for more than 300 days. Our results also show that Lake Superior's oxygen cycle is dominated by solubility changes; as a result, the expected relationship between biological consumption of dissolved O2 and ventilation age does not manifest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.