Abstract
The performance of a multilayer sound attenuating metamaterial with ventilation capacity based on arrays of wall-embedded Helmholtz resonators is investigated analytically, numerically and experimentally. Each cell of the barrier front wall is a Euclidian polygon, such as square or hexagon. One thickness layer of the barrier cell contains a parallel array of 4 (for square cell) or 6 (for hexagon) Helmholtz resonators connected via the axial ventilation duct element. Multiple layers of resonators can be connected in sequence with the extension of the ventilation channel. The sound attenuation performance of the barriers is investigated first using the lumped parameter theory and transfer matrix method (TMM), and numerically using the finite element (FE) simulations solving the Helmholtz equations in frequency domain. These results indicate that the sound attenuation in audible range (300–2000 Hz) can be meaningfully improved using several layers with a unique peak resonance frequency assigned to each corresponding layer, with each additional layer improving the total attenuation. However, it is acknowledged that the previously studied fundamental trade-offs between the total barrier thickness, ventilation capacity, operational frequency range and integral sound attenuation do apply to the proposed design as well. Nevertheless, it is suggested that the simplicity of both structural design and theoretical methods of performance estimations make the suggested barrier a good candidate for applications with a well known desired attenuation spectrum. The impedance tube experiments validate the sound blocking performance and show a reasonable agreement with the numerical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.