Abstract

Clinical assessment of venous thrombosis (VT) is essential to evaluate the risk of size increase or embolism. Analyses like echogenecity and echostructure characterization, examine ancillary evidence to improve diagnosis. However, such analyses are inherently uncertain and operator dependent, adding enormous complexity to the task of indexing diagnosed images for medical practice support, by retrieving similar images, or to exploit electronic patient record repositories for data mining. This paper proposes a VT ultrasound image indexing and retrieval approach, which shows the suitability of neural network VT characterization, combined with a fuzzy similarity. Three types of image descriptors (sliding window, wavelet coefficients energy and co-occurrence matrix), are processed by three different neural networks, producing equivalent VT characterizations. Resulting values are projected on fuzzy membership functions and then compared with the fuzzy similarity. Compared to nominal and Euclidean distances, an experimental validation indicates that the fuzzy similarity increases image retrieval precision beyond the identification of images that belong to the same diagnostic class, taking into account the characterization result uncertainty, and allowing the user to privilege any particular feature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.