Abstract
To describe changes in venous blood gas analytes during isoflurane anesthesia in black-tailed prairie dogs (Cynomys ludovicianus). Prospective study. 16 black-tailed prairie dogs. Black-tailed prairie dogs were placed in an anesthesia chamber for induction of general anesthesia, which was maintained with isoflurane in oxygen delivered via mask. Immediately following anesthetic induction, a venous blood sample was obtained from the medial saphenous vein; a second venous blood sample was obtained just prior to anesthetic gas shutoff. An evaluation of venous blood gas analytes was performed on each sample. General linear mixed models with repeated measures were used for data analyses. Median anesthetic time was 90 minutes (range, 60 to 111 minutes). A significant increase from immediately after induction to completion of anesthesia was observed in Pco2 and mean blood chloride ion, BUN, and creatinine concentrations. A decrease in Po2, mean blood pH, and anion gap was observed from induction of anesthesia to completion. No significant differences during anesthesia were observed in mean base excess or blood bicarbonate, sodium, potassium, calcium, magnesium, blood glucose, lactate, and total CO2 concentrations. No complications occurred during or after anesthesia for any animal. Examination of prairie dogs often requires general anesthesia, with isoflurane currently the inhalation agent of choice. Results suggested respiratory acidosis and relative azotemia may occur during isoflurane anesthesia of prairie dogs. Given the increased risk associated with anesthesia in small mammals and the propensity for respiratory disease in prairie dogs, insight into physiologic changes associated with isoflurane anesthesia in healthy prairie dogs can aid in perioperative evaluation and anesthetic monitoring in this rodent species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Veterinary Medical Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.