Abstract

Spider venoms are highly complex mixtures. Numerous spider venom metabolites are uniquely found in spider venoms and are of interest concerning their potential use in pharmacology, agriculture, and cosmetics. A nontargeted ultra-high performance high-resolution electrospray tandem mass spectrometry (UHPLC-HR-ESI-MS/MS) approach offers a resource-saving way for the analysis of crude spider venom. However, the identification of known as well as the structure elucidation of unknown low molecular mass spider venom compounds based on their MS/MS spectra is challenging because (1) acylpolyamine toxins are exclusively found in spider and wasp venom, (2) reference MS/MS spectra are missing in established mass spectrometry databases, and (3) trivial names for the various toxin metabolites are used in an inconsistent way in literature. Therefore, we introduce the freely accessible MS website for low molecular mass spider venom metabolites, venoMS, containing structural information, MS/MS spectra, and links to related literature. Currently the database contains the structures of 409 acylpolyamine toxins, 36 free linear polyamines, and 81 additional spider venom metabolites. Implemented into this website is a fragment ion calculator (FRIOC) that allows us to predict fragment ions of linear polyamine derivatives. With three metabolites from the venom of the spider Agelenopsis aperta, it was demonstrated how the new website can support the structural elucidation of acylpolyamines using their MS/MS spectra.

Highlights

  • More than 98% of the components of untargeted metabolomics’ experiments remain uncharacterized because the reference spectra are not available in established mass spectrometry databases (National Institute of Standards and Technology (NIST), Metlin, MassBank, Global Natural ProductSocial Molecular Networking (GNPS), and others) [1]

  • The identification of known as well as the structure elucidation of unknown low molecular mass spider venom compounds based on their MS/MS spectra is challenging because (1) acylpolyamine toxins are exclusively found in spider and wasp venom, (2) reference MS/MS spectra are missing in established mass spectrometry databases, and (3) trivial names for the various toxin metabolites are used in an inconsistent way in literature

  • A new fragment ion calculator (FRIOC) for polyamine toxins was implemented in order to support the identification of known as well as the structure elucidation of yet unknown acylpolyamines on the basis of their MS/MS spectra

Read more

Summary

Introduction

The website focuses on spider venom metabolites with low molecular masses (

Results
Discussion
Identification of Individual Compounds—General Workflow
Examples of Compound Identification
Comparison of the
VenoMS Website
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.