Abstract

It is argued that an account for the Veneziano ghost pole, appearing in resolving the U(1) problem, is necessary for understanding an isospin violation in the $ \pi - \eta - \eta' $ system. By virtue of a perturbative expansion around the $ SU(2)_{V} $ ( $ m_{u} = m_{d} $ ) symmetric Veneziano solution, we find that the ghost considerably suppresses isospin breaking gluon and s-quark matrix elements. We speculate further on a few cases where the proposed mechanism can play an essential role. We discuss the isospin violation in meson-nucleon couplings and its relevance to the problem of charge asymmetric nuclear forces and possible breaking of the Bjorken sum rule. It is shown that the ghost pole could yield the isospin violation of order 2 \% for the $ \pi N $ couplings and 20 \% for the Bjorken sum rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.