Abstract

B-cell lymphoma 2 (Bcl-2) protein plays a vital role in enhancing malignant cell survival by alleviating programmed cell death. Therefore, Bcl-2 protein has been identified as a charming druggable target for cancer treatment. Venetoclax has enticed considerable attention as a potential Bcl-2 inhibitor. Herein, in-silico computations were executed to search for new venetoclax analogs against the Bcl-2 protein. A library involving 4112 was collected, prepared, and virtually screened against Bcl-2 protein using AutoDock Vina1.1.2 software. Promising analogs in complex with Bcl-2 protein were further submitted to molecular dynamics (MD) simulations, pursued by binding energy computations using the MM-GBSA approach. Compared to venetoclax (ΔGbinding = −51.2 kcal/mol), PubChem-873-158-83 and PubChem-148-422-478 demonstrated greater binding affinities with Bcl-2 protein throughout 100 ns MD simulations with ΔGbinding values of −69.1 and −62.4 kcal/mol, respectively. Structural and energetical analyses unveiled good stabilization of the identified analogs complexed with Bcl-2 protein over the MD course. The pharmacokinetic features of the two identified analogs were anticipated and unveiled the oral bioavailability of these compounds. Further in-vitro/in-vivo biological evaluations around these compounds could assist in identifying anticancer leads towards Bcl-2 protein.Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.