Abstract

Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a neuromuscular disease affecting around 1-9 in 1,000,000 children. LAMA2-CMD is caused by mutations in the LAMA2 gene resulting in the loss of laminin-211/221 heterotrimers in skeletal muscle. LAMA2-CMD patients exhibit severe hypotonia and progressive muscle weakness. Currently, there is no effective treatment for LAMA2-CMD and patients die prematurely. The loss of laminin-α2 results in muscle degeneration, defective muscle repair and dysregulation of multiple signaling pathways. Signaling pathways that regulate muscle metabolism, survival and fibrosis have been shown to be dysregulated in LAMA2-CMD. As vemurafenib is a US Food and Drug Administration (FDA)-approved serine/threonine kinase inhibitor, we investigated whether vemurafenib could restore some of the serine/threonine kinase-related signaling pathways and prevent disease progression in the dyW-/- mouse model of LAMA2-CMD. Our results show that vemurafenib reduced muscle fibrosis, increased myofiber size and reduced the percentage of fibers with centrally located nuclei in dyW-/- mouse hindlimbs. These studies show that treatment with vemurafenib restored the TGF-β/SMAD3 and mTORC1/p70S6K signaling pathways in skeletal muscle. Together, our results indicate that vemurafenib partially improves histopathology but does not improve muscle function in a mouse model of LAMA2-CMD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.