Abstract

The orbital state of a satellite in a central force field can be uniquely described by its velocity hodograph, a circle, rather than the Keplerian conic. Also, its coordinate-frame rotation about the attracting center is definable, without singularity, by the four-parameter set of Euler parameters. A unified state model of orbital trajectory and attitude dynamics has previously been developed by use of state variables of the orbital velocity hodograph and Euler parameters. The dynamical constraint equations of this orbital state model are especially effective in advanced techniques of state estimation, used for orbit determination and prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call