Abstract
The present work proposes a novel numerical solution algorithm based on a differential quadrature (DQ) method to simulate natural convection in an inclined cubic cavity using velocity–vorticity form of the Navier–Stokes equations. Since the DQ method employs a higher-order polynomial to approximate any given differential operator, the vorticity values at the boundaries can be computed more accurately than the conventionally followed second-order accurate Taylor’s series expansion scheme. The numerical capability of the present algorithm is demonstrated by the application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the continuity equation, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. Thus coupling the velocity and the vorticity transport equations allows the determination of the vorticity boundary values implicitly without requiring the explicit specification of the vorticity boundary conditions. The present algorithm is proved to be an efficient method to resolve the non-linearity involved with the vorticity transport equations and the energy equation. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 10 3, 10 4, 10 5 and 10 6 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields using a much coarse computational grid compared to other numerical schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.