Abstract
In this paper, we first introduce a distributed control strategy for velocity synchronization (or velocity consensus seeking) of multiple heterogeneous Euler-Lagrange (EL) systems with switching communication network topologies. This controller is denoted as the “nominal” controller. To guarantee velocity synchronization for switching communication network topologies we require existence of non-vanishing dwell-time between any two sequential switches. Next, we consider two types of actuator faults namely (1) additive actuator fault, and (2) loss of effectiveness actuator fault. By employing the nominal control algorithm developed for velocity synchronization, we introduce two control algorithms for velocity synchronization in presence of the two types of faults. Simulation results illustrate and demonstrate the effectiveness of our proposed control algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.