Abstract

The question of determining the relative velocity of the local interstellar medium (LISM) based on direct interstellar helium flux measurements in the Solar system is considered. Such measurements were made onboard the Ulysses spacecraft in 1990–2007 at a distance of 2–5 AU from the Sun and have been made from 2009 to the present day onboard the Interstellar Boundary Explorer (IBEX) spacecraft at the Earth’s orbit. Recent works on analyzing the IBEX measurements have shown that the LISM velocity relative to the Sun determined from the IBEX data differs in magnitude (by ≈3 km s−1) and direction (by ≈4°) from the LISM velocity obtained previously by Witte based on Ulysses measurements. We have modeled the Ulysses data (including the 2007 data that have not been considered previously by anybody) by taking into account various LISM velocity vectors and compare our numerical simulations with experimental data. The LISM velocity vector derived from the IBEX data is shown to contradict the Ulysses data in the position of the measured interstellar helium flux maximum on the sky map. In addition, the position of the flux maximum is shown to be determined exclusively by the LISM velocity vector and to be independent of other model parameters (the LISM temperature and ionization rate). This means that the Ulysses data (including the 2007 data obtained only two years before the IBEX measurements) cannot be explained in terms of the existing models with the LISM velocity vector from the IBEX data. Possible reasons for the detected contradictions are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call