Abstract

The importance of functional parameters for evaluating the severity of low back pain is gaining clinical recognition, with evidence suggesting that the angular velocity of lordosis is critical for identification of musculoskeletal deficits. However, there is a lack of data regarding the range of functional kinematics (RoKs), particularly which include the changing shape and curvature of the spine. We address this deficit by characterising the angular velocity of lordosis throughout the thoracolumbar spine according to age and gender. The velocity of lumbar back shape changes was measured using Epionics SPINE during maximum flexion and extension activities in 429 asymptomatic volunteers. The difference between maximum positive and negative velocities represented the RoKs. The mean RoKs for flexion decreased with age; 114°/s (20–35 years), 100°/s (36–50 years) and 83°/s (51–75 years). For extension, the corresponding mean RoKs were 73°/s, 57°/s and 47°/s. ANCOVA analyses revealed that age and gender had the largest influence on the RoKs (p<0.05). The Epionics SPINE system allows the rapid assessment of functional kinematics in the lumbar spine. The results of this study now serve as normative data for comparison to patients with spinal pathology or after surgical treatment.

Highlights

  • Low back pain is one of the most common diseases in western industrialised countries [1;2]

  • Clinical attention has been drawn to assessing the kinematics of changes in spinal shape, which have been shown to provide a greater distinction between patients with low back pain pathology and asymptomatic subjects than measures of e.g. range of motion alone

  • Further evidence demonstrating the importance of dynamic measures was provided by McGregor and co-workers [4], who examined 20 low back pain patients and 20 healthy volunteers using the CA-6000 [5], concluding that the velocity of spinal flexion in the sagittal plane was a clear target for functional identification of pathology

Read more

Summary

Introduction

Low back pain is one of the most common diseases in western industrialised countries [1;2]. Clinical attention has been drawn to assessing the kinematics of changes in spinal shape, which have been shown to provide a greater distinction between patients with low back pain pathology and asymptomatic subjects than measures of e.g. range of motion alone. In this respect, Marras and co-workers demonstrated the importance of dynamics during functional activities by investigating 16 low back pain patients and 18 asymptomatic volunteers using the Ady-Hall lumbar monitor [3]. Further evidence demonstrating the importance of dynamic measures was provided by McGregor and co-workers [4], who examined 20 low back pain patients and 20 healthy volunteers using the CA-6000 [5], concluding that the velocity of spinal flexion in the sagittal plane was a clear target for functional identification of pathology

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call