Abstract
The common-reflection-surface (CRS) stack in addition to high signal-to-noise ratio stacked sections creates the curvature and local dip of a reflector. With this information, so-called kinematic wavefield attributes, it is possible to obtain a subsurface velocity model for laterally inhomogeneous media using normal-incidence-point (NIP) wave inversion. The result of CRS provides some location points on the stacked section as input for the inversion. In each iteration, dynamic ray tracing is applied along the central ray according to an input data point. With this technique, the parameter needed for forward modeling will be obtained. By updating the velocity model and minimizing the misfit between input data and the forward model parameter, it is possible to achieve a final velocity model consistent with input data. In this paper, we applied the CRS method on complex structure in the northeast of Iran, and then we performed the NIP-wave tomography inversion on this data set by means of CRS attributes. The result clearly shows the ability of NIP-wave tomography in velocity-model inversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.