Abstract

An experimental investigation of the moderate Reynolds number plane air jets was undertaken and the effect of the jet Reynolds number on the turbulent flow structure was determined. The Reynolds number, which was defined by the jet exit conditions, was varied between 1000 and 7000. Other initial conditions, such as the initial turbulence intensity, were kept constant throughout the experiments. Both hot-wire and laser Doppler anemometry were used for the velocity measurements. In the moderate Reynolds number regime, the turbulent flow structure is in transition. The average size and the number of the large scale of turbulence (per unit length of jet) was unaffected by the Reynolds number. A broadening of the turbulent spectra with increasing Reynolds number was observed. This indicated that there is a decrease in the strength of the large eddies resulting from a reduction of the relative energy available to them. This diminished the jet mixing with the ambient as the Reynolds number increased. Higher Reynolds numbers led to lower jet dilution and spread rates. On the other hand, at higher Reynolds numbers the dependence of jet mixing on Reynolds number became less significant as the turbulent flow structure developed into a self-preserving state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call