Abstract

The management of mineral fertilisation using centrifugal spreaders requires the development of spread pattern characterisation devices to improve the quality of fertiliser spreading. In order to predict the spread pattern deposition using a ballistic flight model, several parameters need to be determined and especially the velocity of the granules when they leave the spinning disc. This paper demonstrates that a motion blurred image acquired in the vicinity of the disc with a low cost imaging system can provide the three dimensional components of the outlet velocity of the particles. A binary image is first obtained using a recursive linear filter. Then an original method based on the Hough transform is developed to identify the particle trajectories and to measure their horizontal outlet angles, not only in the case of horizontal motion but also in the case of three dimensional motion. The method combines a geometric approach and mechanical knowledge derived from spreading analysis. The outlet velocities are deduced from the outlet angle measurements using kinematic relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.