Abstract
Velocity field was measured by laser Doppler velocimetry in isothermal, turbulent bubbly gas-liquid flow through a 26.6 mm inner diameter vertical pipe. The measurements were made about 33 diameters downstream from the pipe entrance, gas injection being just upstream of the entrance. The gas phase radial distribution at the measurement plane exhibited influence of the injection device in that higher gas fraction existed in the central region of the pipe. For comparison, velocity field was also measured in isothermal, turbulent single-phase liquid flow through the same pipe at the same axial plane. Measured were the radial distributions of liquid mean axial and radial velocities, axial and radial turbulent intensities, and axial Reynolds shear stress. The radial distributions of gas bubble mean axial velocity and axial velocity fluctuation intensity were also measured by LDV. A dualsensor fiberoptic probe was used at the same time to measure the radial distributions of gas fraction, bubble mean axial velocity and size slightly downstream of the LDV measurement plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.