Abstract
Based on the diameter and position information of small vessels obtained by transcranial super-resolution imaging using 3 MHz low-frequency chirp plane waves, a Gaussian-like non-linear compression was adopted to compress the blood flow signals in spatiotemporal filtering (STF) data to a precise region, and then estimate the blood flow velocity field inside the region over the adjacent time intervals using ultrasound imaging velocimetry (UIV). Imaging parameters, such as the mechanical index (MI), frame rate, and microbubble (MB) concentration, are critical during the estimation of velocity fields over a short time at high MB contrast agent concentrations. These were optimized through experiments and algorithms, in which dividing the connected domain was proposed to calculate MB cluster spot centroid spacing (SCS) and the spot-to-flow area ratio (SFAR) to determine the suitable MB concentration. The results of the in vitro experiments showed that the estimation of the small vessel flow velocity field was consistent with the theoretical results; the velocity field resolution for vessels with diameters of 0.5 mm and 0.3 mm was 36 μm and 21 μm, and the error between the mean velocity and the theoretical value was 0.7 % and 0.67 %, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.