Abstract

Human-machine systems, such as those for rehabilitation, are required to be safe for human use when performing a given operating task. Passivity-based controllers such as passive velocity field control have an advantage to realizing the safe operation of human-machine systems. However, active behavior toward the external environment, including human bodies, is required to realize a given task. Such active behavior is difficult for passivity-based controllers. This study focused on ensuring that a manipulator behaves passively toward an external force when the kinetic energy is greater than or equal to a given threshold and actively otherwise. A velocity field control method with an energy compensation mechanism was developed. Numerical simulations demonstrated that the closed-loop system generally behaved passively toward external forces, and the proposed method inhibited the decrease in the kinetic energy of the closed-loop system from a dissipative external force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.