Abstract

The ability to predict fluid behavior, such as velocity distribution or degree of mixing, is a critical step in designing industrial mixing processes. However, the majority of processing technologies are difficult to study using traditional approaches, due to the opacity/impermeability of the construction materials, as well as employed fluids, and geometric complexities of such systems.The current work applies a novel technique, positron emission particle tracking (PEPT), which allows for characterization of complex systems. PEPT relies on triangulation of γ-rays emitted by a radioactive tracer particle, allowing the study of geometrically complex systems regardless of the system properties. This study compares the velocity distributions of a Newtonian fluid, glycerol, and a non-Newtonian fluid, guar gum solution (0.7%, w/w), flowing through 10 elements of a DN25 SMX mixer at 300L/h.Axial velocity remained positive throughout, and no back-mixing was exhibited. The velocity components appeared to be independent of rheology, with the overall flow across 10 mixer elements resembling plug flow. Radial velocities were unimodally distributed around zero in the direction where no mixing was induced, while in the direction in which radial mixing is induced, the velocity distributions were either uni- or bimodal, depending on the geometry of the cross-section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.