Abstract

Direct contact condensation of jets in fluid has been widely applied in many industrial applications owing to the low requirement of driving potential and high efficiency of heat and mass transfer. Here, experiments are carried out to investigate the velocity field characteristics of the turbulent jet induced by direct contact condensation of steam jet in crossflow of water in a vertical pipe. Visual equipment is specially invented to investigate the velocity field characteristics by using Particle Image Velocimetry (PIV) measurement technique. The high intensity laser light reflected by the pure steam region just outside the nozzle-exit brings out severe damage to the CCD camera. To solve this technical problem, a black plate is adopted to shield the pure steam region. According to the contours of the velocity fields and streamlines, the influences of jet momentum ratio, jet Reynolds number and water temperature on the jet flow field are explored. The jet centerline trajectory equations in exponential form are established based on the local maximum mean velocity. By introducing the jet Reynolds number and jet momentum ratio, the correlation for prediction of jet centerline trajectory equations is proposed, and the predicted results are within 30% of the experimental data. The reciprocal of the local maximum mean velocity and the half-width of the jet are proportional to the downstream coordinate along the jet velocity centerline trajectory. The scaled velocity field complies with the self-similarity principle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call