Abstract

Abstract The broader area of Athens, a region exhibiting relatively low crustal deformation, was stroke in 1999 by a catastrophic earthquake posing serious questions regarding strain accumulation in slow deforming regions located within active geodynamic regimes. In the present study, the establishment of a dense geodetic network, primarily designed to monitor local tectonic movements is reported. A comprehensive GNSS velocity field, over the period 2005–2008, as well as calculated geodetic strain rates is presented. It is shown that a single strain tensor is insufficient to express the heterogeneity of the local geodetic field. Local variability of strain is successfully depicted, indicating the western part of Athens as the area of higher strain accumulation. Maximum dilatation rates occur along a NNE-SSW direction between Parnitha Mt. and Thriasio basin. The observed dilatation can be associated to WNW-ESE trending active fault zones, which appear to abruptly terminate towards East along a major NNE-SSW Miocene tectonic boundary. These findings are consistent to the stress field responsible for the Athens 1999 earthquake, also in agreement with geological and tectonic observations. Finally, the implications of the observed motion field on the understanding of the kinematics and dynamics of the region as well as the role of inherited inactive tectonic structures are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call