Abstract

Aiming to precisely estimate the velocity of high-speed targets for step frequency (SF) radar, a positive–positive–negative SF waveform consisting of two continuous positive SF pulse trains and a negative one is designed, and a velocity estimation method is proposed based on two-dimensional time-domain cross correlation (2-D TDCC). Making full use of the characteristics of the designed waveform, the coarse velocity estimation is achieved by 2-D TDCC of positive–positive SF pulse trains and then the Radon transform is applied to solve velocity ambiguity for high-speed targets. After velocity compensation for positive–negative SF pulse trains, the velocity residual is estimated precisely by 2-D TDCC. Simulation results show that the proposed method exhibits good performance for estimation accuracy, stability performance, computational complexity, and data rate by comparisons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call