Abstract
In this paper, we describe the use of the common-reflection-surface (CRS) method to estimate velocities from ground-penetrating radar (GPR) data. Applied to multicoverage data, the CRS method provides, as one of its outputs, the time-domain rms velocity map, which is then converted to depth by the familiar Dix algorithm. Combination of the obtained depth-converted velocity map with electrical resistivity in-situ measurements enables us to estimate both water content and water conductivity. These quantities are essential to delineate infiltration of contaminants from the surface after industrial or agricultural activities. The method was applied to GPR data and compared with the classical NMO approach. The results show that the CRS method provides a physically more meaningful velocity field, thus improving the potential of GPR as an investigation tool for environmental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.