Abstract
AbstractThis study proposes a novel velocity divergence‐generalized adaptive probability density evolution method (VD‐GAPDEM) for calculating the probability density function of the stochastic response process of stochastic structures under stochastic dynamic loads. First, based on the principle of probability conservation, the velocity divergence‐generalized adaptive probability density evolution equation (VD‐GAPDEE) is derived for a stochastic system that can effectively consider the shape and location changes of the joint transitional probability density of representative points (RPs) in the stochastic response process. Second, a novel VD‐GAPDEM is proposed to solve the VD‐GAPDEE directly using the point selection technique based on the generalized F discrepancy and the second‐order Runge–Kutta method with a smoothing kernel method (Runge–Kutta‐SKFAM). Furthermore, the differences and connections between VD‐GAPDEM and the existing probability density evolution method are analyzed. Additionally, the high computational efficiency and accuracy of the proposed VD‐GAPDEM are demonstrated through three typical examples of stochastic response analysis, involving stochastic systems subjected to stochastic dynamic loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.