Abstract

We use the suite of Milky Way-like galaxies in the Auriga simulations to determine the contribution to annihilation radiation from dark matter subhalos in three velocity-dependent dark matter annihilation models: Sommerfeld, p-wave, and d-wave models. We compare these to the corresponding distribution in the velocity-independent s-wave annihilation model. For both the hydrodynamical and dark-matter-only simulations, only in the case of the Sommerfeld-enhanced annihilation does the total annihilation flux from subhalos exceed the total annihilation flux from the smooth halo component within the virial radius of the halo. Progressing from Sommerfeld to the s, p, and d-wave models, the contribution from the smooth component of the halo becomes more dominant, implying that for the p-wave and d-wave models the smooth component is by far the dominant contribution to the radiation. Comparing to the Galactic center excess observed by Fermi-LAT, for all simulated halos the emission is dominated by the smooth halo contribution. However, it is possible that for Sommerfeld models, extrapolation down to mass scales below the current resolution limit of the simulation would imply a non-negligible contribution to the gamma-ray emission from the Galactic Center region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.