Abstract

An important ingredient in theories for diffusion of charged particles across a mean magnetic field are velocity correlation functions along and across that field. In the current article we present an analytical study of these functions by investigating the two-dimensional Fokker–Planck equation. We show that for an isotropic pitch-angle Fokker–Planck coefficient, the parallel velocity correlation function is an exponential function in agreement with the standard model used previously. For other forms of the pitch-angle diffusion coefficient, however, we find non-exponential forms. Also a new, velocity correlation function based, approach for deriving the so-called Earl-relation is presented. This new derivation is more systematic and simpler than previous derivations. We also discuss higher-order velocity correlations and the applicability of the quasi-normal hypothesis in particle diffusion theory. Furthermore, we compute velocity correlation functions across the mean field and develop an alternative theory for perpendicular diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.