Abstract
Axial and tangential components of the velocity vector are measured using a Laser Doppler Velocimeter (LDV) system in a confined highly turbulent isothermal swirling flow near a swirl plate. The flow has essential features of swirl-stabilized flame combustors. Throughout this study, a constant “nominal” swirl number of 0.36 is generated by air jets from a set of slots in a swirl plate. A low-speed coflowing air, referred to as dilution air, is uniformly distributed around the swirling flow by use of an annular-shaped honeycomb. Three different swirling air flow rates with a fixed dilution flow rate are studied and results are discussed. Detailed mean axial and tangential velocity profiles at several axial locations show that the size and the strength of the central recirculation zone are strongly dependent on the swirling air flow rate. Increasing the swirl air flow rate increases both the radial extent and the axial length of the central recirculation zone. Mean total and reversed air flow rates are calculated by integrating the mean axial velocity profiles. In the setup used in this study and up to the axial positions investigated, the reversed flow rate as a percent of the total flow rate seems to be linearly proportional to the reversed-flow zone area, being independent of the swirl air flow rate at a fixed nominal swirl number value. As swirl air flow rate is increased, the root mean square (rms) of the axial and tangential velocity fluctuations increase monotonically at almost all radial positions except sufficiently away from the swirl plate and near the chamber axis. Several velocity biasing correction methods are reviewed. A simple velocity biasing correction scheme is applied in this study to investigate its effect on the conclusions reached in the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.