Abstract

The seismic velocity and attenuation of fully saturated shales were measured for the first time under overpressured conditions, using the ultrasonic reflection technique. Shale cores from naturally overpressured horizons in the North Sea were tested in the laboratory, at confining and pore pressures relevant to in situ conditions.A single‐frequency tone‐burst pulse wave was used to determine the seismic wave velocities and quality factors of the shale samples, with errors less than 0.3% and 0.1 dB/cm, respectively, at a frequency of 0.75 MHz. Sample length changes with varying confining and pore pressure were measured and the pore pressure equilibration time was monitored for each sample.The anisotropy of the seismic attributes (Vp, Vs, Qp and Qs) was determined over a range of differential pressures from 5 to 60 MPa, with respect to the predominant foliation. The ultrasonic velocity data followed a transversely isotropic pattern depending on the direction of wave propagation with respect to the laminations. The Poisson's ratio was found to rise by 5% as the shale material progressed from a normally pressured to an overpressured state. The quality factor (Q) characteristics were interpreted in terms of pore geometry and connectivity as well as the directional permeability of the transversely isotropic shale material. The results were converted to bulk and shear loss modulus defects, and a positive bulk loss was observed for waves propagating perpendicular to the lamination plane even above differential pressures of 20 MPa. This indicates different levels of Biot‐flow and squirt‐flow attenuation mechanisms acting within the shale structure, depending on the wave propagation and vibration directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call