Abstract

The existing producing processes of micro spiral swimmers are complex. Here, a microswimmer with a magnetic layer on the surface of the spiral carbon nanotubes is proposed, which has a simple producing process. For the microswimmer, its equations of the velocities and out-step frequency are deduced. Using these equations, the velocities and out-step frequency of the microswimmer and their changes with related parameters are investigated. Results show that its velocities are proportional to the radius and helix angle of the spiral carbon nanotubes, and its out-step frequencies are proportional to magnetic field strength, the helix angle and magnetic layer thicknesses of the spiral carbon nanotubes, and inversely proportional to the fluid viscosity. The out-step frequency of the microswimmer is measured, which is in good agreement with the calculative ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.