Abstract

We numerically study the propagation of reacting fronts through three-dimensional flow fields composed of convection rolls that include time-independent cellular flow, spatiotemporally chaotic flow, and weakly turbulent flow. We quantify the asymptotic front velocity and determine its scaling with system parameters including the local angle of the convection rolls relative to the direction of front propagation. For cellular flow fields, the orientation of the convection rolls has a significant effect upon the front velocity and the front geometry remains relatively smooth. However, for chaotic and weakly turbulent flow fields, the front velocity depends upon the geometric complexity of the wrinkled front interface and does not depend significantly upon the local orientation of the convection rolls. Using the box counting dimension we find that the front interface is fractal for chaotic and weakly turbulent flows with a dimension that increases with flow complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.