Abstract

P‐wave reflections from horizontal interfaces in transversely isotropic (TI) media have nonhyperbolic moveout. It has been shown that such moveout as well as all time‐related processing in TI media with a vertical symmetry axis (VTI media) depends on only two parameters, [Formula: see text] and η. These two parameters can be estimated from the dip‐moveout behavior of P‐wave surface seismic data. Alternatively, one could use the nonhyperbolic moveout for parameter estimation. The quality of resulting estimates depends largely on the departure of the moveout from hyperbolic and its sensitivity to the estimated parameters. The size of the nonhyperbolic moveout in TI media is dependent primarily on the anisotropy parameter η. An “effective” version of this parameter provides a useful measure of the nonhyperbolic moveout even in v(z) isotropic media. Moreover, effective η, [Formula: see text], is used to show that the nonhyperbolic moveout associated with typical TI media (e.g., shales, with η ≃ 0.1) is larger than that associated with typical v(z) isotropic media. The departure of the moveout from hyperbolic is increased when typical anisotropy is combined with vertical heterogeneity. Larger offset‐to‐depth ratios (X/D) provide more nonhyperbolic information and, therefore, increased stability and resolution in the inversion for [Formula: see text]. The X/D values (e.g., X/D > 1.5) needed for obtaining stability and resolution are within conventional acquisition limits, especially for shallow targets. Although estimation of η using nonhyperbolic moveouts is not as stable as using the dip‐moveout method of Alkhalifah and Tsvankin, particularly in the absence of large offsets, it does offer some flexibility. It can be applied in the absence of dipping reflectors and also may be used to estimate lateral η variations. Application of the nonhyperbolic inversion to data from offshore Africa demonstrates its usefulness, especially in estimating lateral and vertical variations in η.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.