Abstract

Visual near-infrared imaging equipment has broad applications in various fields such as venipuncture, facial injections, and safety verification due to its noncontact, compact, and portable design. Currently, most studies utilize near-infrared single-wavelength for image acquisition of veins. However, many substances in the skin, including water, protein, and melanin can create significant background noise, which hinders accurate detection. In this paper, we developed a dual-wavelength imaging system with phase-locked denoising technology to acquire vein image. The signals in the effective region are compared by using the absorption valley and peak of hemoglobin at 700[Formula: see text]nm and 940[Formula: see text]nm, respectively. The phase-locked denoising algorithm is applied to decrease the noise and interference of complex surroundings from the images. The imaging results of the vein are successfully extracted in complex noise environment. It is demonstrated that the denoising effect on hand veins imaging can be improved with 57.3% by using our dual-wavelength phase-locked denoising technology. Consequently, this work proposes a novel approach for venous imaging with dual-wavelengths and phase-locked denoising algorithm to extract venous imaging results in complex noisy environment better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.