Abstract

Vehicular visible light communications (VVLC) is promising intelligent transportation systems technology with the utilization of light-emitting diodes. The main degrading factor for the performance of VVLC systems is noise. Traditional VVLC systems noise modeling is based on the additive white Gaussian noise assumption in the form of shot and thermal noise. In this paper, to investigate both time correlated and white noise components of the VVLC channel noise, we propose a noise analysis based on Allan variance, which provides a time-series analysis method to identify noise from the data. The results show that white noise and random walk are observed in the VVLC systems. We also propose a motion detection algorithm based on the adaptive Gaussian mixture (GM) model to generate a double Gaussian model of VVLC channel noise. We further present a study on the error performance of a VVLC system considering channel noise to be a mixture of Gaussian components. We derive the analytical expressions of probability of error for binary phase-shift keying and quadrature phase-shift keying constellations. It has been observed that, in the presence of GM noise, the system performance degrades significantly from the usual one expected in a Gaussian noise environment and becomes a function of the mixing coefficients of the GM distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.