Abstract

Relative positioning among vehicles finds many applications regarding location-based services in intelligent transportation systems (ITSs). This article introduces a hybrid relative positioning strategy integrating global navigation satellite system (GNSS), inertial navigation system (INS), and ultrawideband (UWB) observations, which addresses measurement outliers and GNSS outages simultaneously. An improved extended Kalman filter (IEKF) based on tracking an appropriately weighted window of past innovations is developed to deal with measurement outliers. To perform relative positioning during GNSS outages, a nonlinear autoregressive network with exogenous inputs (NARX) is developed to predict GNSS measurements increments, with the least-squares support vector machine (LSSVM) algorithm identifying the NARX model. The NARX-LSSVM module learns the relationship between GNSS pseudorange and Doppler shift increments of a target vehicle and its local and neighbors’ dynamics. Whereas during GNSS outages, the increments of GNSS measurements are generated by this prediction algorithm. The feasibility of the proposed methodology is evaluated on empirical road data, and improved positioning accuracy is achieved in cooperative positioning (CP) systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.