Abstract
The main objective of vehicular ad hoc networks (VANETs) is to improve driver safety and traffic efficiency. Most VANET applications are based on periodic exchange of safety messages between nearby vehicles and between vehicles and nearby road side communication units (e.g., traffic lights, road-side lights, etc.). This periodic communication generates huge amount of data that have typical storage, computation, and communication resources needs. In recent years, there has been huge developments in automotive industry, computing, and communication technologies. This has led to vehicular cloud computing (VCC) as a solution to satisfy the requirements of VANETs such as computing, storage, and networking resources. Vehicular fog computing (VFC) is a standard that comprehends cloud computing and related services to the proximity of a network. Since VANET applications have special mobility, low latency, and location awareness requirements, fog computing plays a significant role in VANET applications and services. In urban cities, vehicles parked at shopping malls, offices and similar other places are under-utilized. These can offer great opportunity and value to implement applications of VFC by utilizing vehicles as an infrastructure. In this chapter, we present real time scenarios and applications of VANET that can be implemented using VFC. VANET applications and quality of service can be enhanced by aggregating the resources of these vehicles. We discuss different types of scenarios of moving and parked vehicles as computational, communication, storage and network infrastructures. We have also discussed the challenges and open problems to implement VFC system. This chapter provides the thorough understanding of novel research paradigm and about vehicular communication infrastructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.