Abstract

In road traffic scene analysis, it is important to observe vehicular traffic and how pedestrian foot traffic affects the over-all traffic situation. Road context is also significant in proper detection of vehicles and pedestrians. This paper presents a vehicle-pedestrian detection and classification system with road context recognition using convolutional neural networks. Using Catch-All traffic video data sets, the system was trained to identify vehicles and pedestrians in four different road conditions such as low-altitude view T-type road intersection (DSO), mid-altitude view bus stop area in day-time (DS4-1) and night-time (DS4-3) condition, and high-altitude view wide intersection (DS3-1). In the road context recognition, the system was first tasked to identify in which of the four road conditions the current traffic scene belongs. This is designed to ensure a high detection rate of vehicles and pedestrians in the mentioned road conditions. Road context recognition has 98.64% training accuracy with 2800 sample images, and 100% validation accuracy with 1200 sample images. After road context recognition, a detection algorithm for vehicle and pedestrians was trained for each condition. In DSO, the training accuracy is 97.75% with 1200 image samples, while validation accuracy is 94.75% with 400 image samples. In DS3-1, the training accuracy is 98.63% with 1400 image samples, while validation accuracy is 98.29% with 600 image samples. In DS4-1, the training accuracy is 99.43% with 1400 image samples, while validation accuracy is 99.83% with 600 image samples. In DS4-3, the training accuracy is 97.77% with 1400 image samples, while validation accuracy is 98.29% with 600 image samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.