Abstract

An investigation into the dynamics of vehicle–occupant–structure-induced vibration of bridges traversed by moving vehicles is presented. The vehicle including the driver and passengers is modelled as a half-car planar model with six degrees-of-freedom, and the bridge is assumed to obey the Euler–Bernoulli beam theory with arbitrary conventional boundary conditions. Due to the continuously moving location of the variable loads on the bridge, the governing differential equations become rather complicated. The numerical simulations presented here are for the case of vehicle travelling at a constant speed on a uniform bridge with simply supported end conditions. The relationship between the bridge vibration characteristics and the vehicle speed is rendered, which yields into a search for a particular speed that determines the maximum values of the dynamic deflection and the bending moment of the bridge. Results at different vehicle speeds demonstrate that the maximum dynamic deflection occurs at the vicinity of the bridge mid-span, while the maximum bending moment occurs at ±20% of the mid-span point. It is shown that one can find a critical speed at which the maximum values of the bridge dynamic deflection and the bending moment attain their global maxima.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call