Abstract

Vehicle type/make recognition based on images captured by surveillance cameras is a challenging task in intelligent transportation system and automatic surveillance. In this paper, we comparatively studied two feature extraction methods for image description, i.e. a new multiresolution analysis tool called Fast Discrete Curvelet Transform and the pyramid histogram of oriented gradients (PHOG). Curvelet Transform has better directional and edge representation abilities than widely used wavelet transform, which is particularly appropriate for the description of images rich with edges. PHOG represents the local shape by a histogram of edge orientations computed for each image sub-region, quantized into a number of bins, thus has the ascendency in its description of more discriminating information. A composite feature description from PHOG and Curvelet can further increase the accuracy of classification by taking their complementary information. We also investigated the applicability of the Rotation Forest (RF) ensemble method for vehicle classification based on the combined features. The RF ensemble contains a set of base multilayer perceptrons which are trained using principal component analysis to rotate the original axes of combined features of vehicle images. The class label is assigned by the ensemble via majority voting. Experimental results using more than 600 images from 21 makes of cars/vans show the effectiveness of the proposed approach. The composite feature is better than any single feature in the classification accuracy and the ensemble model produces better performance compared to any of the individual neural network base classifier. With a moderate ensemble size of 20, the Rotation Forest ensembles offers a classification rate close to 96.5%, exhibiting promising potentials for real-life applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.