Abstract

The mitigation of peak-valley difference and transient power fluctuation are both of great significance to the economy and stability of the power grid. This paper proposes a novel vehicle-to-grid behavior management method that can provide peak-shaving and fast power balancing service to the grid simultaneously. Firstly, a multi-time scale vehicle-to-grid behavior management framework is designed to enable large-scale optimization and real-time control at the same time in vehicle-to-grid scheduling. Then, the grid peak-shaving requirement is modeled as an optimization problem in a centralized V2G state coordinator, where the charging behavior of all grid-connected electric vehicles can be synergistically scheduled. The optimization variable is designed as a group of vehicle-to-grid state control signals that can respond to grid peak-shaving requirements. Further, a V2G power controller is designed to manage the vehicle charging power in real time based on the sampled grid frequency state and discrete state control signals. In the developed scheduling method, the charging power of grid-connected electric vehicles is scheduled by the cooperation between the V2G state coordinator and the power controller. The effectiveness of the proposed methodologies is verified on a microgrid system, and results indicate that the V2G scheduling can achieve multi-time scale grid power balancing. This work can bring dual benefits, enabling system operators to use cheap solutions to manage energy networks and allowing vehicle owners to gain profits from providing V2G services to the grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.