Abstract
With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a road adhesion coefficient estimator based on the generalized high-order cubature Kalman filter (GHCKF) algorithm are designed. The vehicle state estimator combines the vehicle model and the tire model to calculate the vehicle state parameters, provides the state parameters for the road adhesion coefficient estimator, and realizes the real-time estimation of the road adhesion coefficient. The exponential fading memory adaptive algorithm is used to update the measurement noise variance, and we upgrade the GHCKF to the adaptive generalized high-order cubature Kalman filter (AGHCKF), which estimates the vehicle state and road adhesion coefficient. The typical working conditions using the double GHCKF/AGHCKF estimation algorithm were simulated and analyzed. Then, high-and low-speed driving experiments based on typical working conditions were carried out. An integrated navigation system (INS), global positioning system (GPS), and real-time kinematic positioning (RTK) were used to collect the real-time data of the vehicle, and compare them with the estimated values of the joint estimator, to verify the feasibility of the vehicle-state–road-adhesion-coefficient joint estimator. We compared a high-order GHCKF algorithm, high-order improved AGHCKF algorithm, and a cubature Kalman filter (CKF) algorithm, and the simulation and experimental results show that the joint estimator using the CKF, GHCKF, and AGHCKF algorithms can realize the real-time estimation of the vehicle state and the road adhesion coefficient. The AGHCKF algorithm shows the best effectiveness and robustness of the three algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.